Rate of curvature decay for the contracting cusp Ricci flow
نویسندگان
چکیده
منابع مشابه
Positivity of Ricci Curvature under the Kähler–ricci Flow
An invariant cone in the space of curvature operators is one that is preserved by a flow. For Ricci flow, the condition R ≥ 0 is preserved in all dimensions, while the conditionR ≤ 0 is preserved only in real dimension two. Positive curvature operator is preserved in all dimensions [11], but positive sectional curvature is not preserved in dimensions four and above. The known counterexamples, c...
متن کاملMean Curvature Driven Ricci Flow
We obtain the evolution equations for the Riemann tensor, the Ricci tensor and the scalar curvature induced by the mean curvature flow. The evolution for the scalar curvature is similar to the Ricci flow, however, negative, rather than positive, curvature is preserved. Our results are valid in any dimension.
متن کاملRicci Flow Model for Avascular Tumor Decay
Prediction and control of cancer invasion is a vital problem in medical science. This paper proposes a modern geometric Ricci–flow model for control of avascular multicellular tumor spheroid decay.
متن کاملIsotropic Curvature and the Ricci Flow
In this paper, we study the Ricci flow on higher dimensional compact manifolds. We prove that nonnegative isotropic curvature is preserved by the Ricci flow in dimensions greater than or equal to four. In order to do so, we introduce a new technique to prove that curvature functions defined on the orthonormal frame bundle are preserved by the Ricci flow. At a minimum of such a function, we comp...
متن کاملRicci Flow and Nonnegativity of Curvature
In this paper, we prove a general maximum principle for the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we construct complete manifolds with bounded nonnegative sectional curvature of dimension greater than or equal to four such that the Ricci flow does not preserve the nonnegativity of the sectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2020
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2020.v28.n5.a3